Lateral fluid percussion injury in the developing rat causes an acute, mild behavioral dysfunction in the absence of significant cell death.
نویسندگان
چکیده
Lateral fluid percussion injury (LFP), a model of mild-moderate concussion, leads to the temporary loss of the capacity for experience-dependent plasticity in developing rats. To determine if this injury-induced loss in capacity for plasticity is due to cell death, we conducted stereological measurements within the cerebral cortex and CA3 of the hippocampus 2 weeks following mild, moderate or severe LFP in the post-natal day 19 (P19) rat. Results indicated that there was no significant change in the absolute number of neurons, regardless of injury severity, in either the ipsilateral cortex (sham = 10.6 +/- 1.7, mild = 11.5 +/- 2.1, moderate = 10.0 +/- 1.0, severe = 10.9 +/- 1.3 million neurons) or CA3 region of the hippocampus (sham = 251 +/- 38, mild = 289 +/- 2, moderate = 245 +/- 48, severe = 255 +/- 62 thousand neurons). Even though there was no evidence of a significant degree of injury-induced cell death, animals exhibited cognitive deficits as revealed in a Morris water maze task (MWM). The MWM results indicated that regardless of injury severity, P19-injured rats exhibited a significant increase in escape latency compared to age-matched shams (injury by day; P < 0.001) and a significant increase in the number of trials needed to reach criterion (P < 0.05). Analysis of a probe trial one week post-MWM training, however, indicated that there was no deficit in storage or recall of the learned behavior as analyzed by platform hits (sham = 2.9 +/- 0.37, mild = 2.0 +/- 0.40, moderate = 1 +/- 0, severe = 2.8 +/- 0.62) or percent time spent in, or immediately surrounding, the platform area (sham = 13.5 +/- 1.71, mild = 10.8 +/- 2.32, moderate = 12.7 +/- 0, severe = 13.5 +/- 1.69). Taken together, these results indicate that while LFP in P19-injured animals does not lead to significant cell death, it does generate acute, mild deficits in MWM performance.
منابع مشابه
Behavioral, electrophysiological, and histopathological consequences of mild fluid-percussion injury in the rat.
Metabolic dysfunction in the relay nuclei of the rat vibrissa circuit follows traumatic brain injury (TBI). This study examined the effects of mild (1.4-1.5 atm) parasagittal fluid-percussion injury on the electrophysiology of this circuit. TBI caused significant reductions in slope and increases in latency of vibrissa-evoked field potentials 3 days after injury. Assessment of open-field swimmi...
متن کاملHippocampal immediate early gene transcription in the rat fluid percussion traumatic brain injury model.
Traumatic brain injury (TBI) is one of the leading causes of neurological disability and death in the USA across all age groups, ethnicities, and incomes. In addition to the short-term morbidity and mortality, TBI leads to epilepsy and severe neurocognitive symptoms, both of which are referenced to post-traumatic hippocampal dysfunction, although the mechanisms of such hippocampal dysfunction a...
متن کاملTime-dependent changes of autophagy and apoptosis in lipopolysaccharide-induced rat acute lung injury
Objective(s): Abnormal lung cell death including autophagy and apoptosis is the central feature in acute lung injury (ALI). To identify the cellular mechanisms and the chronology by which different types of lung cell death are activated during lipopolysaccharide (LPS)-induced ALI, we decided to evaluate autophagy (by LC3-II and autophagosome) and apoptosis (by caspase-3) at different time point...
متن کاملMorphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat
Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...
متن کاملTemporal pattern of neurodegeneration, programmed cell death, and neuroplastic responses in the thalamus after lateral fluid percussion brain injury in the rat.
The effects of traumatic brain injury (TBI) on the thalamus are not well characterized. We analyzed neuronal degeneration and loss, apoptosis, programmed cell death-executing pathways, and neuroplastic responses in the rat thalamus during the first week after lateral fluid percussion injury (LFPI). The most prominent neurodegenerative and neuroplastic changes were observed in the region contain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain research
دوره 1077 1 شماره
صفحات -
تاریخ انتشار 2006